京东6.18大促主会场领京享红包更优惠

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 7503|回复: 0

NVIDIA集成AI超算中心经验,打造AI就绪型数据中心

[复制链接]

7

主题

0

回帖

10

积分

新手上路

积分
10
发表于 2019-7-28 23:03:46 | 显示全部楼层 |阅读模式 来自 中国
看点:NVIDIA AI 部署宝典:数据中心必看,一并搞定算力、散热、功率难题。
/ Z8 C% ~& p3 d% f! y" h! [% S/ w. X6 _
$ q5 O$ D6 F6 {7 j0 a
% D$ Q  N) n8 T! |" s( B: M0 v) z
传统数据中心向人工智能(AI)转型已是大势所趋。
. O1 V" Z: g3 G% O/ A: C. k6 {: ?+ ?一方面,从智能客服、智能安防、智能风控、智能运维到智能质检,愈加丰富的智能化应用致使存储需求呈现指数级增长,并对数据中心的算力提出新的挑战。0 M. k! i* K8 i7 ]# K4 ^' e
另一方面,AI 正打破传统数据中心的管理和运营模式,完成更为精准的系统调优、故障预判等任务,替代更多人力,减少能耗和资源浪费,更大程度释放生产力。
6 N8 t* B7 {# o. d; U' B+ ]作为 AI 时代的基础设施,AI 硬件正成为越来越多数据中心扩容建设的关键所在。尤其是能源、银行、保险、制造、电信、医疗等重度存储用户,急需加速 AI 的基础架构方案。
  x# A8 ]! b8 x5 D5 W7 ?/ ?3 i当超强计算力成为数据中心的刚需,NVIDIA GPU 凭借强大的并行计算和浮点能力突破了深度学习的算力瓶颈,成为 AI 硬件的首选。" ?, i! Y9 F* H+ h/ G6 Z
然而,对于许多传统数据中心而言,部署包含 AI 硬件的基础设施,需要耗费许多时间与人力。
+ N4 Y0 O; g( f$ e对此,NVIDIA 基于 GPU 软硬件生态系统,提供了一站式交付节点解决方案 DGX POD。7 g+ K, I: Q9 x  c, k# _  N
这一方案可以大大节省构建基础设施所花费的时间,帮助数据中心轻松快速进行 AI 部署,为扩展多 GPU 服务器节点提供更多支持。7 {4 l3 @  x% D* ~
本期的智能内参,我们推荐《NVIDIA DGX POD 数据中心参考设计》白皮书,从传统数据中心的 AI 转型之困着手,结合 DGX POD 的应用实例,解读 NVIDIA DGX POD 交付节点的核心亮点,为亟待快速转型 AI 的数据中心架构师,以及准备构建 AI 就绪型数据中心提供参考。如需查阅此白皮书《NVIDIA DGX POD 数据中心参考设计》,可直接点击左下方的“阅读原文”下载。
% u2 p8 R/ p1 o- a4 `/ n! e以下为智能内参整理呈现的干货:1 p; `9 j( U0 ~5 d$ B: @, V
! W( |  P$ k# D( e) i) e& X8 D
数据中心 AI 转型遭遇困局/ L: K, G% ]$ e, i+ U

, l0 g3 l! S  i7 G8 h0 {" O/ _, T! u0 ~% m" I  c
大数据、AI 与云计算等新兴技术卷起新的浪潮,在各类数据中心中形成连锁反应。海量数据处理任务涌入数据中心,面对人工智能应用的训练和推理,令传统的CPU 服务器难以招架。
0 W9 j- Z* ]3 e2 M5 }: _6 P深度学习算法属于计算密集型算法,与 NVIDIA GPU 计算架构十分契合。过去 CPU 需要花数十天完成的计算任务,通用 GPU 只用几小时就能完成,这大幅提升深度学习等并行处理数据方法的计算效率,使得以 GPU 为基础的设备日渐成为各大数据中心进行深度学习训练的首选。8 e; Z$ x' b' c# z9 @! r
然而,即便部署了强大的硬件设备,也不意味着数据中心的 AI 转型计划就万事俱备了,还有一个关键问题摆在眼前——架构设计。
6 A9 P: u& U8 z0 v+ J* c$ \数据中心需要考虑的因素远不止算力,还需兼顾网络、存储、电源、散热、管理和软件等方面问题。
1 I/ z( O! E7 p& X+ ?" F/ e, g硬件组合不是简单粗暴的积木堆叠,并不是说计算节点越多,性能就会随之线性增长。其计算性能会受制于高速互联网络,一旦出现数据拥堵,整机系统的效率都可能被拖累。另外,过多计算硬件堆叠,可能导致功耗过大,不利于日后的运营。
2 o' u+ U9 `  x6 s因此,数据中心必须思考如何打造了降本增效的最佳方式,将各种硬件资源协同组合,在稳定安全的状态下,以超低延迟和高带宽访问数据集。% ~4 u- |, w7 f. h9 i% `
这对于缺乏 AI 部署经验的传统数据中心而言,无疑是个不小的挑战。如果 DIY GPU 计算节点,不仅需要耗费人力和时间成本,还要考虑计算、存储、交换机等各种硬件设备的集成兼容问题。
  X0 z; |, _) h- a0 I! F7 d对于这一痛点,NVIDIA 提供了一个颇有吸引力的解决方案。
" ?" P! o+ m- \! A7 Z  R它通过与领先的存储、网络交换技术提供商合作,提供一系列 DGX POD 数据中心交付节点设计参考架构,将 NVIDIA 长期积累的超大规模数据中心 AI 部署经验,转化为可复制方案,无论是大中小型数据中心,均可以直接参考使用。
. U1 ?" m9 _+ l0 a* ^

) \# ]; w& C3 V4 Y- hNVIDIA AI 超级计算机构建经验转换
# S. Q2 G, F& m+ B7 t+ g6 U+ P0 g

9 f% I4 l4 ~6 t4 `6 Q
1 Z- g" E. k' m2 YDGX POD 交付节点(Point of Delivery)是一种经优化的数据中心机架,包含多台 DGX-1 或 DGX-2 服务器、存储服务器和网络交换机等最佳实践。
; J1 a% o# D* s/ e: G& d( O7 L# D; S- z' H
▲ DGX POD 参考架构正面图# o2 x: Y) }. p' {. m. [
这是 NVIDIA 构建大量超大规模 GPU 加速计算节点的经验之集大成者。NVIDIA 曾建立了大型的 AI 数据中心,包含数千台领先的 DGX 服务器加速计算节点。
3 ^# X0 N6 x6 K: O今年6月,NVIDIA 宣布推出全球速度排名第22位的超级计算机 DGX SuperPOD,为企业快速部署自动驾驶汽车项目,提供同等大小的超算无法匹敌的 AI 性能。
: ]  a: Z2 ]9 C, I% `SATURNV 亦是 NVIDIA 基于 DGX 系统构建的 AI 超级计算机,支持自动驾驶汽车、机器人、显卡、HPC 等多领域的 NVIDIA 内部 AI 研发。早在2016年推出之际,DGX SATURNV 就登上 Green 500 超算榜第一,被评为全球最经济高效的超算,整体运算速度位列第28位,是最快的 AI 超算。
5 B$ y7 d- p6 G基于使用 SATURNV 所遵循的设计原则和架构,NVIDIA 在短短三周内就打造出一套基于 NVIDIA DGX-2 配置的全新系统 DGX SuperPOD。近期 NVIDIA 借助一套基于 DGX-2 的配置在 MLPerf 基准测试中创下六项 AI 性能记录。
; Z. {. X4 F( g# ^0 N$ f# b, Y% I在将 DGX SATURAN 打造成所有企业都可复制的、经验证的设计过程中,NVIDIA 经过实地检验积累了丰富的经验,并将计算、网络、存储等多方面的最佳实践,集中于 NVIDIA DGX POD 的设计之中。( A6 W$ I. {4 l# a
如今,包括 Arista、思科、DDN、Dell EMC、IBM Storage、Mellanox、NetApp 和 Pure Storage 等在内的业内数据中心领导者已围绕 DGX POD,推出了基于其各自特有技术的相关产品。
- Z  x4 W0 O' _% q- r这些集成系统均为客户提供经过经验验证的可靠方法,这意味着,每个企业都能量身定制完全适配自身需求的 AI 超算中心。# J/ ]9 A  Y! g' |! P. s
例如,基于 DGX POD,NetApp 推出了 NetApp ONTAP AI  融合基础架构。其由 NVIDIA DGX-1 服务器、 NetApp 云互联存储系统提供支持,是 NVIDIA 和 NetApp 联合开发和验证的架构。  \( X0 |+ }5 q# \4 |8 P
借助这一架构,企业可以从小规模起步进行无缝扩展,智能管理跨边缘、核心和云以及反向数据传输的完整深度学习数据管道,简化  AI  部署。3 X3 m$ c+ i$ N
围绕 NVIDIA DGX POD 参考架构和 NetApp ONTAP AI,英国剑桥咨询公司构建了一套专门的 AI 研究设施,用于训练一个能即刻准确识别各种音乐流派的 AI “狂热爱好者”。  @4 U# x5 u- Y" \) @
借助参考框架,其 AI 项目所带来的对计算、存储、网络设施的需求均得到满足。经过在16台 NVIDIA GPU 上接受数百小时的音乐训练,这位特殊的音乐爱好者,在“听音识流派”的准确度上,甚至超越了人类和传统编程。+ _3 ~$ X1 ^' m- D1 g
; P3 K+ F! U# Z) q$ g' N
AI 软件:调优 DGX 硬件,降低管理门槛6 Z7 ~8 [8 [5 j& V7 H3 K; t

& U4 I% Y4 W+ l# m. z  `, r+ }- p& ^; J6 G
除了设计优化的 DGX 服务器、存储服务器和网络交换机组合 ,DGX POD 上还运行一整套适配的 NVIDIA AI 软件堆栈,极大简化 DGX POD 的日常操作与维护,为大规模多用户 AI 软件开发团队提供高性能的深度学习训练环境。& m) t# b7 ?% {$ y
5 J; w. z2 ^; K, d1 w/ K9 H
▲ NVIDIA AI 软件堆栈
8 ]0 u6 ]+ ^1 ]- D. NNVIDIA AI 软件包括 DGX 操作系统(DGX OS)、集群管理和协调工具、工作负载调度器、来自 NVIDIA GPU Cloud (NGC) 容器注册表的和优化容器,可以为使用者提供优化的操作体验。
8 [0 a4 W! f& pDGX POD 管理软件可根据需要,自动创新安装 DGX OS。DGX OS 是 NVIDIA AI 软件堆栈的基础,基于优化版 Ubuntu Linux 操作系统构建,并专门针对 DGX 硬件进行调优,支持各种 NVIDIA 库和框架及 GPU 的容器进行时。
0 P1 u" U' ?" P; c0 ?) q. q0 ]: s& ?+ K' s$ R
▲ DGX POD 管理软件层/ o& J' r1 X4 k$ y: ~6 E
DGX POD 管理软件层由 Kubernete 容器协调框架上运行的各项服务组成,可通过网络(PXE)为动态主机配置协议(DHCP)和全自动 DGX OS 软件配置提供服务。/ [1 A$ A* S, h1 ^6 F
通过使用其简单的用户界面,管理员可在由 Kubernetes 和 Slurm 管理的域中移动 DGX 服务器。未来 Kubernetes 增强功能预计在纯 Kubernetes 环境中,支持所有 DGX POD 用例。3 o  R+ h# F! t5 ]8 b0 a5 F# T
DGX POD 上的 NVIDIA AI 软件可借助 Ansible 配置管理工具进行管理,白皮书中有提供其开源的软件管理堆栈和文档在 Github 上的链接。! w/ H, i  C& B% Q7 {
智东西认为,DGX POD 一站式交付节点解决方案,不仅能加速数据中心的 AI 部署效率,同时也通过提供更强大的算力,大幅度提升数据的利用效率。
. F& i0 L: B( }+ i, e+ H+ G4 p当前,很多数据中心刚刚踏入或计划踏入 AI 的大门,而当下主流的深度学习算法必须配备专业的 AI 基础设施。基于 NVIDIA DGX POD 的架构方案,对于快速构建大规模 AI 计算集群非常具有参考价值。随着此类基础架构逐渐普及,更多数据中心将得以消除设备与资本预算之间的鸿沟。- `. z# C, Z7 d7 P9 u  K4 s- U
这只是 NVIDIA 打造 AI 就绪型数据中心宏图的重要版面之一,利用 DGX-1、DGX-2 服务器和NVIDIA GPU 大规模计算架构的发展进步,NVIDIA 正将机器学习、深度学习和高性能计算(HPC)扩展到更多的数据中心,为金融、能源、制造、电信、医疗、科学计算等更多行业的生产力提升提供动力引擎。+ L+ `9 p; A4 ]2 J3 t
如需查阅此白皮书《NVIDIA DGX POD 数据中心参考设计》,可直接点击左下方的“阅读原文”下载。1 M3 ?3 P& ~- X5 [4 w
% K# B7 U) D# |& F4 I' V

/ J. b! t) [: F- y) k来源:http://mp.weixin.qq.com/s?src=11&timestamp=1564324204&ver=1756&signature=lzmOBny3VsKicsBbRilU-jCqaXPlfHO3NiPHxSA5ExQEflvku*zNzABRYJyH2rWKX7OAx1rw4BgY1r0zcj8uiuuI7R3fWMirVZVvIGuP3Oj7k7hAUZBuO0wn8Gimb5uD&new=1
7 c' W" r1 f9 T3 `7 X1 w7 A! a: r免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×

帖子地址: 

梦想之都-俊月星空 优酷自频道欢迎您 http://i.youku.com/zhaojun917
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

站长推荐上一条 /6 下一条

QQ|手机版|小黑屋|梦想之都-俊月星空 ( 粤ICP备18056059号 )|网站地图

GMT+8, 2025-7-18 16:38 , Processed in 0.054504 second(s), 28 queries .

Powered by Mxzdjyxk! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表