京东6.18大促主会场领京享红包更优惠

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 7552|回复: 0

NVIDIA集成AI超算中心经验,打造AI就绪型数据中心

[复制链接]

7

主题

0

回帖

10

积分

新手上路

积分
10
发表于 2019-7-28 23:03:46 | 显示全部楼层 |阅读模式 来自 中国
看点:NVIDIA AI 部署宝典:数据中心必看,一并搞定算力、散热、功率难题。
6 a; j3 G' g) k  O( y
3 G! Q  ~: X) W( M
6 j2 _9 h8 R7 f2 K7 ^1 C) T, l2 b7 g6 _: W
传统数据中心向人工智能(AI)转型已是大势所趋。: x  z# |0 V/ l8 @4 v; i' t7 K
一方面,从智能客服、智能安防、智能风控、智能运维到智能质检,愈加丰富的智能化应用致使存储需求呈现指数级增长,并对数据中心的算力提出新的挑战。. @" G) Q$ v  ^6 F: b% n+ U
另一方面,AI 正打破传统数据中心的管理和运营模式,完成更为精准的系统调优、故障预判等任务,替代更多人力,减少能耗和资源浪费,更大程度释放生产力。: A0 @' X7 z6 u8 O6 [! d; ^9 r
作为 AI 时代的基础设施,AI 硬件正成为越来越多数据中心扩容建设的关键所在。尤其是能源、银行、保险、制造、电信、医疗等重度存储用户,急需加速 AI 的基础架构方案。! Z, j% R; ?2 L' R: o& ^* L; A5 q; {: o
当超强计算力成为数据中心的刚需,NVIDIA GPU 凭借强大的并行计算和浮点能力突破了深度学习的算力瓶颈,成为 AI 硬件的首选。
4 b& _. l8 H0 B1 A然而,对于许多传统数据中心而言,部署包含 AI 硬件的基础设施,需要耗费许多时间与人力。
; V1 z  R1 y" R0 U对此,NVIDIA 基于 GPU 软硬件生态系统,提供了一站式交付节点解决方案 DGX POD。  [; k; \3 Q4 h( ~
这一方案可以大大节省构建基础设施所花费的时间,帮助数据中心轻松快速进行 AI 部署,为扩展多 GPU 服务器节点提供更多支持。" L0 b: H- z- d8 r
本期的智能内参,我们推荐《NVIDIA DGX POD 数据中心参考设计》白皮书,从传统数据中心的 AI 转型之困着手,结合 DGX POD 的应用实例,解读 NVIDIA DGX POD 交付节点的核心亮点,为亟待快速转型 AI 的数据中心架构师,以及准备构建 AI 就绪型数据中心提供参考。如需查阅此白皮书《NVIDIA DGX POD 数据中心参考设计》,可直接点击左下方的“阅读原文”下载。
" N3 |* J6 F! W; v( K以下为智能内参整理呈现的干货:
7 T0 N+ Z% W$ d! l6 W! K. I
  U! w; K' n! @0 T& E0 w/ b+ W* n  m
数据中心 AI 转型遭遇困局
  \. A  S% t- [
0 A) h8 o, d. v; |0 w

; S* J1 Z7 t2 m1 U大数据、AI 与云计算等新兴技术卷起新的浪潮,在各类数据中心中形成连锁反应。海量数据处理任务涌入数据中心,面对人工智能应用的训练和推理,令传统的CPU 服务器难以招架。
2 T% g8 [) m' k, y深度学习算法属于计算密集型算法,与 NVIDIA GPU 计算架构十分契合。过去 CPU 需要花数十天完成的计算任务,通用 GPU 只用几小时就能完成,这大幅提升深度学习等并行处理数据方法的计算效率,使得以 GPU 为基础的设备日渐成为各大数据中心进行深度学习训练的首选。
: A; C" \3 R) {7 o; H然而,即便部署了强大的硬件设备,也不意味着数据中心的 AI 转型计划就万事俱备了,还有一个关键问题摆在眼前——架构设计。7 R5 L; m$ L. S( a. w) {
数据中心需要考虑的因素远不止算力,还需兼顾网络、存储、电源、散热、管理和软件等方面问题。- F7 ]9 W$ h; ?; a+ \5 [
硬件组合不是简单粗暴的积木堆叠,并不是说计算节点越多,性能就会随之线性增长。其计算性能会受制于高速互联网络,一旦出现数据拥堵,整机系统的效率都可能被拖累。另外,过多计算硬件堆叠,可能导致功耗过大,不利于日后的运营。
9 p# u! F" d+ ^1 i因此,数据中心必须思考如何打造了降本增效的最佳方式,将各种硬件资源协同组合,在稳定安全的状态下,以超低延迟和高带宽访问数据集。- o; o; o9 `8 [6 G' {
这对于缺乏 AI 部署经验的传统数据中心而言,无疑是个不小的挑战。如果 DIY GPU 计算节点,不仅需要耗费人力和时间成本,还要考虑计算、存储、交换机等各种硬件设备的集成兼容问题。
& j6 G4 C4 w( B; W对于这一痛点,NVIDIA 提供了一个颇有吸引力的解决方案。
7 \. P" k: y9 f( D9 `1 b/ v& O它通过与领先的存储、网络交换技术提供商合作,提供一系列 DGX POD 数据中心交付节点设计参考架构,将 NVIDIA 长期积累的超大规模数据中心 AI 部署经验,转化为可复制方案,无论是大中小型数据中心,均可以直接参考使用。
6 P- ?+ W3 a0 |0 L& Y
3 W" d, F9 Q" T$ v" i
NVIDIA AI 超级计算机构建经验转换  w* Y5 Q4 c7 m% W+ n' C

) w9 ~4 k$ j* r7 K
" x6 ^& s& D4 }" `6 w8 X+ RDGX POD 交付节点(Point of Delivery)是一种经优化的数据中心机架,包含多台 DGX-1 或 DGX-2 服务器、存储服务器和网络交换机等最佳实践。( N7 r1 E! Z8 Q- @

! j2 E4 P% S) v: _▲ DGX POD 参考架构正面图& ~4 x% z3 P$ q3 F
这是 NVIDIA 构建大量超大规模 GPU 加速计算节点的经验之集大成者。NVIDIA 曾建立了大型的 AI 数据中心,包含数千台领先的 DGX 服务器加速计算节点。
$ k# m! d/ ]$ z+ t5 W3 c今年6月,NVIDIA 宣布推出全球速度排名第22位的超级计算机 DGX SuperPOD,为企业快速部署自动驾驶汽车项目,提供同等大小的超算无法匹敌的 AI 性能。+ f8 p9 I5 J" i; G: r! B8 }
SATURNV 亦是 NVIDIA 基于 DGX 系统构建的 AI 超级计算机,支持自动驾驶汽车、机器人、显卡、HPC 等多领域的 NVIDIA 内部 AI 研发。早在2016年推出之际,DGX SATURNV 就登上 Green 500 超算榜第一,被评为全球最经济高效的超算,整体运算速度位列第28位,是最快的 AI 超算。$ T& _8 s! k( n. p. X! e1 I0 [% z
基于使用 SATURNV 所遵循的设计原则和架构,NVIDIA 在短短三周内就打造出一套基于 NVIDIA DGX-2 配置的全新系统 DGX SuperPOD。近期 NVIDIA 借助一套基于 DGX-2 的配置在 MLPerf 基准测试中创下六项 AI 性能记录。/ [1 `3 D; R* D8 ]4 X
在将 DGX SATURAN 打造成所有企业都可复制的、经验证的设计过程中,NVIDIA 经过实地检验积累了丰富的经验,并将计算、网络、存储等多方面的最佳实践,集中于 NVIDIA DGX POD 的设计之中。! n+ t5 v/ R8 x$ k) @  }# b& N
如今,包括 Arista、思科、DDN、Dell EMC、IBM Storage、Mellanox、NetApp 和 Pure Storage 等在内的业内数据中心领导者已围绕 DGX POD,推出了基于其各自特有技术的相关产品。
: ^9 m% q) A9 G; x; E: D这些集成系统均为客户提供经过经验验证的可靠方法,这意味着,每个企业都能量身定制完全适配自身需求的 AI 超算中心。! M2 n/ x' o! |, s
例如,基于 DGX POD,NetApp 推出了 NetApp ONTAP AI  融合基础架构。其由 NVIDIA DGX-1 服务器、 NetApp 云互联存储系统提供支持,是 NVIDIA 和 NetApp 联合开发和验证的架构。- [! v+ W/ u8 H* _& g$ _% ~# Z
借助这一架构,企业可以从小规模起步进行无缝扩展,智能管理跨边缘、核心和云以及反向数据传输的完整深度学习数据管道,简化  AI  部署。
: j2 w2 O: K0 g1 d. U1 b  c围绕 NVIDIA DGX POD 参考架构和 NetApp ONTAP AI,英国剑桥咨询公司构建了一套专门的 AI 研究设施,用于训练一个能即刻准确识别各种音乐流派的 AI “狂热爱好者”。: D5 ?6 g% E. j) ?3 S" E( j
借助参考框架,其 AI 项目所带来的对计算、存储、网络设施的需求均得到满足。经过在16台 NVIDIA GPU 上接受数百小时的音乐训练,这位特殊的音乐爱好者,在“听音识流派”的准确度上,甚至超越了人类和传统编程。
0 q8 s& P  C3 }, l

3 k! @7 J% y, Z" S0 `; Z6 SAI 软件:调优 DGX 硬件,降低管理门槛
7 P; p% ]! d0 `! T
2 ~4 k7 e0 e3 M) [4 k  b
  ^8 P% K( S6 R- K
除了设计优化的 DGX 服务器、存储服务器和网络交换机组合 ,DGX POD 上还运行一整套适配的 NVIDIA AI 软件堆栈,极大简化 DGX POD 的日常操作与维护,为大规模多用户 AI 软件开发团队提供高性能的深度学习训练环境。- G7 `& j6 F3 B- X  P9 \! r2 n* ~

" l9 @5 X0 D- x  L* I▲ NVIDIA AI 软件堆栈2 s, g$ ]7 \8 i+ [5 K
NVIDIA AI 软件包括 DGX 操作系统(DGX OS)、集群管理和协调工具、工作负载调度器、来自 NVIDIA GPU Cloud (NGC) 容器注册表的和优化容器,可以为使用者提供优化的操作体验。# M7 B. n* L% P
DGX POD 管理软件可根据需要,自动创新安装 DGX OS。DGX OS 是 NVIDIA AI 软件堆栈的基础,基于优化版 Ubuntu Linux 操作系统构建,并专门针对 DGX 硬件进行调优,支持各种 NVIDIA 库和框架及 GPU 的容器进行时。
" C* Z- a0 j' m0 `; @1 [
$ @! T- J1 E- q) f; M▲ DGX POD 管理软件层
7 e; g5 u( @, H1 f! Q$ g/ o" Q, ODGX POD 管理软件层由 Kubernete 容器协调框架上运行的各项服务组成,可通过网络(PXE)为动态主机配置协议(DHCP)和全自动 DGX OS 软件配置提供服务。
* V- B/ H& ^3 F; n* ?) s& m) ?" ^通过使用其简单的用户界面,管理员可在由 Kubernetes 和 Slurm 管理的域中移动 DGX 服务器。未来 Kubernetes 增强功能预计在纯 Kubernetes 环境中,支持所有 DGX POD 用例。
  M' d3 w% c+ @/ W6 sDGX POD 上的 NVIDIA AI 软件可借助 Ansible 配置管理工具进行管理,白皮书中有提供其开源的软件管理堆栈和文档在 Github 上的链接。
) q; n- y# W8 W3 m智东西认为,DGX POD 一站式交付节点解决方案,不仅能加速数据中心的 AI 部署效率,同时也通过提供更强大的算力,大幅度提升数据的利用效率。
& e0 }. w/ J& O6 m* |6 L1 n) m. l当前,很多数据中心刚刚踏入或计划踏入 AI 的大门,而当下主流的深度学习算法必须配备专业的 AI 基础设施。基于 NVIDIA DGX POD 的架构方案,对于快速构建大规模 AI 计算集群非常具有参考价值。随着此类基础架构逐渐普及,更多数据中心将得以消除设备与资本预算之间的鸿沟。. q3 U: p; H. i& o" \! H
这只是 NVIDIA 打造 AI 就绪型数据中心宏图的重要版面之一,利用 DGX-1、DGX-2 服务器和NVIDIA GPU 大规模计算架构的发展进步,NVIDIA 正将机器学习、深度学习和高性能计算(HPC)扩展到更多的数据中心,为金融、能源、制造、电信、医疗、科学计算等更多行业的生产力提升提供动力引擎。
' x8 c" D& S5 k& K9 t如需查阅此白皮书《NVIDIA DGX POD 数据中心参考设计》,可直接点击左下方的“阅读原文”下载。
4 j8 t8 T' P( }& \+ x; }0 B
( t* i2 v& ]# m" g( F! h/ R4 P
" N& X& N8 z5 @
来源:http://mp.weixin.qq.com/s?src=11&timestamp=1564324204&ver=1756&signature=lzmOBny3VsKicsBbRilU-jCqaXPlfHO3NiPHxSA5ExQEflvku*zNzABRYJyH2rWKX7OAx1rw4BgY1r0zcj8uiuuI7R3fWMirVZVvIGuP3Oj7k7hAUZBuO0wn8Gimb5uD&new=1+ T, S/ D. U) g2 M0 P, N7 Q
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×

帖子地址: 

梦想之都-俊月星空 优酷自频道欢迎您 http://i.youku.com/zhaojun917
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|手机版|小黑屋|梦想之都-俊月星空 ( 粤ICP备18056059号 )|网站地图

GMT+8, 2025-10-21 23:36 , Processed in 0.038614 second(s), 25 queries .

Powered by Mxzdjyxk! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表