京东6.18大促主会场领京享红包更优惠

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 4514|回复: 0

Facebook:把握好三维世界,才能把握好AR/VR的未来

[复制链接]

12

主题

0

回帖

10

积分

新手上路

积分
10
发表于 2019-10-30 22:35:04 | 显示全部楼层 |阅读模式 来自 中国
hi188| 编辑

: {3 m6 L0 _, i4 Y! L1 B近期正在韩国首尔国际计算机视觉大会(ICCV)上,一大波的AI研究继而公布,Facebook计划发表40多篇论文,其中我们关注到2D照片下三维场景重建与内容理解,等等3D图像分析的研究。1 `* y6 y- \# D' p
这些有什么作用呢,我们知道随着5G技术和千兆宽带的普及,届时的互联网媒介形式势必也会迎来改变,其中以AR/VR体验的三维形态的媒体内容被看作重点方向。
6 j9 q) z$ Y; Y/ k6 G随着场景形态逐渐向三维转变,届时将会迎来一个高度逼真的虚拟世界,而三维内容的理解也将变得更为重要。例如现在的AI技术可以很好的识别2D照片/视频中的物体、动作等等,而到了三维场景中又会迎来新的玩法。
2 y( ]1 U* S* `0 y6 R$ e1 f/ {. a  r6 u+ Q6 K  ?) R, o) S
Facebook AI研究院今天发布的一篇博客中,着重提到了其在3D内容理解上的努力。8 w) ]. b0 }8 @4 W0 j# D1 W3 Q) n& y
文章中提到,想要了解周围的世界的前提是,AI必须能够理解三维视觉场景,这种需求不仅仅体现在机器人、导航、AR/VR等方面,甚至在2D照片/视频中也得能够正确识别出其中的一个杯子的三维形状等等。
$ h7 {! F8 M; F3 C. @( Y+ |9 r以下的几项研究,正在以不同但互补的方式来推进三维场景解析技术的发展。1 x$ y; g* g% g! A3 _

    3 V  p9 _* ~$ _; L7 q9 h% i5 p  Y
  • Mesh R-CNN,一种可以精准预测现实环境中2D图像中物体的3D形状的框架,其可以检测复杂的对象,比如椅子腿儿、被遮挡的家具等;
    6 W9 F: g) |, w, u$ L: m+ K
  • C3DPO,一种在2D关键点注释中,提取出可变性对象的3D模型的方法,已用于14个类别的对象,通过2D关键点标注实现,无3D标注信息;
    ( @; G" F1 X9 F3 e; }/ [. J& E
  • 通过新方法学习图像像素与3D形状之间的关联,大大降低对注释训练的依赖,从而更接近可以实现更多种类对象3D重建的自我监督系统;! F2 E8 h/ Z* w9 p; U6 `
  • VoteNet技术,可在LiDAR或其它3D传感器输入可用时,进行对象检测,该系统完全基于3D点云技术,精度更高。- V% E; l2 Z# x# b: @2 g

    3 G. C. [2 d, o; C( ]+ X9 `: y2 g* ~  t

    + {* ~1 p1 l" L% l8 g& ?$ N/ M
如何更好的解析出3D形状; V5 F1 I6 O" i; u: ]
包括Mask R-CNN在内的很多图像解析AI框架,往往是在2D环境中进行工作,在3D环境下可能并不适用。不过,凭借2D环境中的感知技术作为积累,Facebook重新设计了一个3D对象重建的AI模型。
% H$ F. ?$ u: P1 B该模型的特点是可在现实的场景图片中去预测3D对象的形状,而这其中的挑战在于光学部分,例如:是否有遮挡,是否有杂波以及其它拓扑的对象。. }( L; g, }$ v
为了应对挑战,首先通过网格预测分支加强Mask R-CNN在2D对象分割系统,并构建Totch3d(Pytorch库)从而实现:Mesh R-CNN,其通过Mask R-CNN进行对象的检测和分类。然后通过新型网络预测模型推测3D形状,该预测包含体素预测和网格细化共同构成。
0 }; M2 a0 B8 b5 `* ^5 u3 d$ _$ h% R
最后通过Detectron2完成整套框架的结构,即:输入RGB图像--检测物体--预测3D形状的过程。
9 Y" e, ]1 Y- c  c# r2 h  b据悉,Facebook的新型方法支持成对图像和网格的完全监督学习预测3D形状,为了进行训练,Facebook还是用10000对图像和网格组成的Pix3D数据集,这个数据集比其它训练数据集(通常10万个图像、需进行标注)要小很多。+ N  X9 F, ?0 |& G# p
最终在两个数据集上进行Mesh R-CNN的评估,效果比较理想。在Pix3D数据集上,能够检测所有类别对象,并能预测出被遮挡的家具的完整形状;而在ShapNet数据集上,体素预测和网格细化的混合法比以前要好7%。: F  L) F. |0 v2 ?" C9 g

9 D  u4 J4 i1 I: C( s准确预测、并重建现实世界中无约束的场景形状,无疑是增强未来AR\VR等其它类似体验的重要工作。联想到Facebook在今年OC6公布的共享空间和3D重建体验,以及未来面向AR和机器视觉等众多体验的合集LiveMap,这些都是技术的基础。9 k4 {; `3 v: X" P+ C
尽管如此,和2D图像相比,3D图像在收集注释数据的工作上要复杂得多,且更为耗时,这也是3D形状预测数据集比2D对应数据集进展要落后的原因,而接下来Facebook也在探索更多不同的方法,利用监督学习和自我监督学习来重建3D对象。
7 b4 J9 W# y  x# U1 c使用2D关键点重建3D对象类别( p# }! Z7 a/ Z
对于那些无法使用网格和图像训练、且无需完全重建静态对象/场景的案例,Facebook开发了一种新的代替方案:C3DPO,其通过大量丰富的2D关键节点数据,进行监督学习实现更好的重建结果。而C3DPO以弱监督的方式解析出3D几何形状,且被证明适合大规模部署。5 k9 R  M% ]  w6 b0 y

$ e; G( M9 _2 W, G. `其中特定部分(例如人体关键、鸟翅膀)的2D关键点,成为了该方法中重新构建对象几何形状、变形或视点变化的线索。这些3D关键点利用价值也很高,例如在VR中创建逼真的面部和全身网格模型时。, [! ?, z) v+ o+ R' u# z' ]; s
简单来讲,C3DPO是一种能重建包括数十万具有上千个2D关键点的数据集方法,并且针对三种不同的数据集、14种以上的非刚性物体类别,进行精度重建。另外,和Mesh R-CNN类似,C3DPO同样支持那些有遮挡或部分缺失图像。$ i! v7 S0 r0 T1 S' u& x- x8 Z0 i
而C3DPO模型还具备两个创新,一是,在给定一组单眼2D关键点的情况下,C3DPO将以标准方向预测相机视点的参数和3D关键点位置;二是,Facebook提出一个新的正则化技术,其包括与3D重建网络模型共同学习的第二个辅助深度模型,它解决了因分解3D视点和形状带来的冲突。正是基于这两项创新,才是C3DPO的方法比传统的数据统计模型表现更好。# ^6 n% j1 k* I' j
根据Facebook描述,这种3D模型构建在以前是无法实现的,主要由于此前基于矩阵式分解的方法有很多限制,与C3DPO采用的深度网络模型不同,其能够“小规模”运行。为了解决3D重建带来的变形问题,此前往往通过同一时间多张图像合成解决,这对硬件要求更高,而C3DPO则可以在硬件无法进行3D拍摄(例如飞机等体型特别大的物体)的情况下实现3D重建。
* f8 m1 f" h4 a0 o- k. u; p9 ~另外还有从图像集学习图形像素与形状的映射关系,以及提升3D系统中对象检测能力的两个论文本文不再解读,感兴趣可阅读原文了解。5 m9 Z0 D% O2 ]+ Z
总而言之,3D计算机视觉领域还有很多值得探究的领域,还有很多问题尚未被解决,还需要像此前进行2D计算机视觉探索那样继续前行。随着数字世界的不断推进,我们将会转向使用3D照片、AR、VR等技术,因此未来需要更准确的理解场景中对象、交互动作等一系列复杂的问题。Facebook表示:能够开发出向人类一样理解现实世界,并与之互动的AI系统是其长期目标。诚然,这就需要不断缩小物理空间和数字化的虚拟空间之间的隔阂与距离,而在3D视觉方面就还有很多工作需要大家共同努力。/ g7 d3 G) z4 ?
随着数字世界的不断推进,我们将会转向使用3D照片、AR、VR等技术,因此未来需要更准确的理解场景中对象、交互动作等一系列复杂的问题。( s; [; s8 j) C/ U; Q2 j4 E* u
Facebook表示:能够开发出向人类一样理解现实世界,并与之互动的AI系统是其长期目标。诚然,这就需要不断缩小物理空间和数字化的虚拟空间之间的隔阂与距离,而在3D视觉方面就还有很多工作需要大家共同努力。
4 Q$ P3 P8 J1 H+ a+ ?" a. h参考:
: h5 x% l& _; @& K: shttps://ai.facebook.com/blog/pushing-state-of-the-art-in-3d-content-understanding/
4 \- B0 F( A0 i. R8 \* X( B& H, ~8 i
(END)

' `/ Y7 C4 K& l7 ?2 s/ B9 _5 z
& |+ E% @" d& w    推荐阅读    
/ ^0 n) k8 h+ M9 K7 S& G) T1 a. N" d  p3 u3 X' c! W0 p

) b; i$ K. |! h" h5 |9 c2 D5 n7 }
; e& w- X3 \2 X& q

. F- _4 i) i+ m9 `. }
' K. f$ ?/ \; b4 j! I+ n: \- g8 A) ^

$ D% b/ [, I/ R0 C7 }8 K
) E# Y% g- Q2 E  v& o* n" T 每天五分钟,轻松了解前沿科技。    $ R; c( _. d7 h) K7 \4 y
         —— 青亭网  ' |. O' y$ s8 _! w2 v3 B; W
来源:http://mp.weixin.qq.com/s?src=11&timestamp=1572444005&ver=1944&signature=Nb57qrD6cXqllnhJvEE6H6occUi*WX3i2MU6ToOnegiW6vhKPmdGUN4DuPLvPk3UGjMXyZcIIma3RpHXHPcUaJQxDFHSnOz9N*hHRaEl1BiKeHC0O4YFvbD8CwX78lCz&new=1* I7 }! B2 p2 r. C$ i
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×

帖子地址: 

梦想之都-俊月星空 优酷自频道欢迎您 http://i.youku.com/zhaojun917
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|手机版|小黑屋|梦想之都-俊月星空 ( 粤ICP备18056059号 )|网站地图

GMT+8, 2025-10-16 09:26 , Processed in 0.045993 second(s), 27 queries .

Powered by Mxzdjyxk! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表